dependencies/glm/GLM/gtx/intersect.inl

201 lines
6.5 KiB
C++

/// @ref gtx_intersect
namespace glm
{
template<typename genType>
GLM_FUNC_QUALIFIER bool intersectRayPlane
(
genType const& orig, genType const& dir,
genType const& planeOrig, genType const& planeNormal,
typename genType::value_type & intersectionDistance
)
{
typename genType::value_type d = glm::dot(dir, planeNormal);
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
if(glm::abs(d) > Epsilon) // if dir and planeNormal are not perpendicular
{
typename genType::value_type const tmp_intersectionDistance = glm::dot(planeOrig - orig, planeNormal) / d;
if (tmp_intersectionDistance > static_cast<typename genType::value_type>(0)) { // allow only intersections
intersectionDistance = tmp_intersectionDistance;
return true;
}
}
return false;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER bool intersectRayTriangle
(
vec<3, T, Q> const& orig, vec<3, T, Q> const& dir,
vec<3, T, Q> const& vert0, vec<3, T, Q> const& vert1, vec<3, T, Q> const& vert2,
vec<2, T, Q>& baryPosition, T& distance
)
{
// find vectors for two edges sharing vert0
vec<3, T, Q> const edge1 = vert1 - vert0;
vec<3, T, Q> const edge2 = vert2 - vert0;
// begin calculating determinant - also used to calculate U parameter
vec<3, T, Q> const p = glm::cross(dir, edge2);
// if determinant is near zero, ray lies in plane of triangle
T const det = glm::dot(edge1, p);
vec<3, T, Q> Perpendicular(0);
if(det > std::numeric_limits<T>::epsilon())
{
// calculate distance from vert0 to ray origin
vec<3, T, Q> const dist = orig - vert0;
// calculate U parameter and test bounds
baryPosition.x = glm::dot(dist, p);
if(baryPosition.x < static_cast<T>(0) || baryPosition.x > det)
return false;
// prepare to test V parameter
Perpendicular = glm::cross(dist, edge1);
// calculate V parameter and test bounds
baryPosition.y = glm::dot(dir, Perpendicular);
if((baryPosition.y < static_cast<T>(0)) || ((baryPosition.x + baryPosition.y) > det))
return false;
}
else if(det < -std::numeric_limits<T>::epsilon())
{
// calculate distance from vert0 to ray origin
vec<3, T, Q> const dist = orig - vert0;
// calculate U parameter and test bounds
baryPosition.x = glm::dot(dist, p);
if((baryPosition.x > static_cast<T>(0)) || (baryPosition.x < det))
return false;
// prepare to test V parameter
Perpendicular = glm::cross(dist, edge1);
// calculate V parameter and test bounds
baryPosition.y = glm::dot(dir, Perpendicular);
if((baryPosition.y > static_cast<T>(0)) || (baryPosition.x + baryPosition.y < det))
return false;
}
else
return false; // ray is parallel to the plane of the triangle
T inv_det = static_cast<T>(1) / det;
// calculate distance, ray intersects triangle
distance = glm::dot(edge2, Perpendicular) * inv_det;
baryPosition *= inv_det;
return true;
}
template<typename genType>
GLM_FUNC_QUALIFIER bool intersectLineTriangle
(
genType const& orig, genType const& dir,
genType const& vert0, genType const& vert1, genType const& vert2,
genType & position
)
{
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
genType edge1 = vert1 - vert0;
genType edge2 = vert2 - vert0;
genType Perpendicular = cross(dir, edge2);
float det = dot(edge1, Perpendicular);
if (det > -Epsilon && det < Epsilon)
return false;
typename genType::value_type inv_det = typename genType::value_type(1) / det;
genType Tengant = orig - vert0;
position.y = dot(Tengant, Perpendicular) * inv_det;
if (position.y < typename genType::value_type(0) || position.y > typename genType::value_type(1))
return false;
genType Cotengant = cross(Tengant, edge1);
position.z = dot(dir, Cotengant) * inv_det;
if (position.z < typename genType::value_type(0) || position.y + position.z > typename genType::value_type(1))
return false;
position.x = dot(edge2, Cotengant) * inv_det;
return true;
}
template<typename genType>
GLM_FUNC_QUALIFIER bool intersectRaySphere
(
genType const& rayStarting, genType const& rayNormalizedDirection,
genType const& sphereCenter, const typename genType::value_type sphereRadiusSquered,
typename genType::value_type & intersectionDistance
)
{
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
genType diff = sphereCenter - rayStarting;
typename genType::value_type t0 = dot(diff, rayNormalizedDirection);
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
if( dSquared > sphereRadiusSquered )
{
return false;
}
typename genType::value_type t1 = sqrt( sphereRadiusSquered - dSquared );
intersectionDistance = t0 > t1 + Epsilon ? t0 - t1 : t0 + t1;
return intersectionDistance > Epsilon;
}
template<typename genType>
GLM_FUNC_QUALIFIER bool intersectRaySphere
(
genType const& rayStarting, genType const& rayNormalizedDirection,
genType const& sphereCenter, const typename genType::value_type sphereRadius,
genType & intersectionPosition, genType & intersectionNormal
)
{
typename genType::value_type distance;
if( intersectRaySphere( rayStarting, rayNormalizedDirection, sphereCenter, sphereRadius * sphereRadius, distance ) )
{
intersectionPosition = rayStarting + rayNormalizedDirection * distance;
intersectionNormal = (intersectionPosition - sphereCenter) / sphereRadius;
return true;
}
return false;
}
template<typename genType>
GLM_FUNC_QUALIFIER bool intersectLineSphere
(
genType const& point0, genType const& point1,
genType const& sphereCenter, typename genType::value_type sphereRadius,
genType & intersectionPoint1, genType & intersectionNormal1,
genType & intersectionPoint2, genType & intersectionNormal2
)
{
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
genType dir = normalize(point1 - point0);
genType diff = sphereCenter - point0;
typename genType::value_type t0 = dot(diff, dir);
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
if( dSquared > sphereRadius * sphereRadius )
{
return false;
}
typename genType::value_type t1 = sqrt( sphereRadius * sphereRadius - dSquared );
if( t0 < t1 + Epsilon )
t1 = -t1;
intersectionPoint1 = point0 + dir * (t0 - t1);
intersectionNormal1 = (intersectionPoint1 - sphereCenter) / sphereRadius;
intersectionPoint2 = point0 + dir * (t0 + t1);
intersectionNormal2 = (intersectionPoint2 - sphereCenter) / sphereRadius;
return true;
}
}//namespace glm