70 lines
2.8 KiB
C++
70 lines
2.8 KiB
C++
|
/// @ref gtx_matrix_factorisation
|
||
|
/// @file glm/gtx/matrix_factorisation.hpp
|
||
|
///
|
||
|
/// @see core (dependence)
|
||
|
///
|
||
|
/// @defgroup gtx_matrix_factorisation GLM_GTX_matrix_factorisation
|
||
|
/// @ingroup gtx
|
||
|
///
|
||
|
/// Include <glm/gtx/matrix_factorisation.hpp> to use the features of this extension.
|
||
|
///
|
||
|
/// Functions to factor matrices in various forms
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
// Dependency:
|
||
|
#include "../glm.hpp"
|
||
|
|
||
|
#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
|
||
|
# ifndef GLM_ENABLE_EXPERIMENTAL
|
||
|
# pragma message("GLM: GLM_GTX_matrix_factorisation is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.")
|
||
|
# else
|
||
|
# pragma message("GLM: GLM_GTX_matrix_factorisation extension included")
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
Suggestions:
|
||
|
- Move helper functions flipud and fliplr to another file: They may be helpful in more general circumstances.
|
||
|
- Implement other types of matrix factorisation, such as: QL and LQ, L(D)U, eigendecompositions, etc...
|
||
|
*/
|
||
|
|
||
|
namespace glm
|
||
|
{
|
||
|
/// @addtogroup gtx_matrix_factorisation
|
||
|
/// @{
|
||
|
|
||
|
/// Flips the matrix rows up and down.
|
||
|
///
|
||
|
/// From GLM_GTX_matrix_factorisation extension.
|
||
|
template <length_t C, length_t R, typename T, qualifier Q>
|
||
|
GLM_FUNC_DECL mat<C, R, T, Q> flipud(mat<C, R, T, Q> const& in);
|
||
|
|
||
|
/// Flips the matrix columns right and left.
|
||
|
///
|
||
|
/// From GLM_GTX_matrix_factorisation extension.
|
||
|
template <length_t C, length_t R, typename T, qualifier Q>
|
||
|
GLM_FUNC_DECL mat<C, R, T, Q> fliplr(mat<C, R, T, Q> const& in);
|
||
|
|
||
|
/// Performs QR factorisation of a matrix.
|
||
|
/// Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in.
|
||
|
/// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
|
||
|
///
|
||
|
/// From GLM_GTX_matrix_factorisation extension.
|
||
|
template <length_t C, length_t R, typename T, qualifier Q>
|
||
|
GLM_FUNC_DECL void qr_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& q, mat<C, (C < R ? C : R), T, Q>& r);
|
||
|
|
||
|
/// Performs RQ factorisation of a matrix.
|
||
|
/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
|
||
|
/// Note that in the context of RQ factorisation, the diagonal is seen as starting in the lower-right corner of the matrix, instead of the usual upper-left.
|
||
|
/// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
|
||
|
///
|
||
|
/// From GLM_GTX_matrix_factorisation extension.
|
||
|
template <length_t C, length_t R, typename T, qualifier Q>
|
||
|
GLM_FUNC_DECL void rq_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& r, mat<C, (C < R ? C : R), T, Q>& q);
|
||
|
|
||
|
/// @}
|
||
|
}
|
||
|
|
||
|
#include "matrix_factorisation.inl"
|