dependencies/glm/GLM/detail/func_matrix_simd.inl

250 lines
8.4 KiB
Plaintext
Raw Normal View History

2022-02-28 19:03:15 +00:00
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
#include "type_mat4x4.hpp"
#include "../geometric.hpp"
#include "../simd/matrix.h"
#include <cstring>
namespace glm{
namespace detail
{
# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE
template<qualifier Q>
struct compute_matrixCompMult<4, 4, float, Q, true>
{
GLM_STATIC_ASSERT(detail::is_aligned<Q>::value, "Specialization requires aligned");
GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& x, mat<4, 4, float, Q> const& y)
{
mat<4, 4, float, Q> Result;
glm_mat4_matrixCompMult(
*static_cast<glm_vec4 const (*)[4]>(&x[0].data),
*static_cast<glm_vec4 const (*)[4]>(&y[0].data),
*static_cast<glm_vec4(*)[4]>(&Result[0].data));
return Result;
}
};
# endif
template<qualifier Q>
struct compute_transpose<4, 4, float, Q, true>
{
GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m)
{
mat<4, 4, float, Q> Result;
glm_mat4_transpose(&m[0].data, &Result[0].data);
return Result;
}
};
template<qualifier Q>
struct compute_determinant<4, 4, float, Q, true>
{
GLM_FUNC_QUALIFIER static float call(mat<4, 4, float, Q> const& m)
{
return _mm_cvtss_f32(glm_mat4_determinant(&m[0].data));
}
};
template<qualifier Q>
struct compute_inverse<4, 4, float, Q, true>
{
GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m)
{
mat<4, 4, float, Q> Result;
glm_mat4_inverse(&m[0].data, &Result[0].data);
return Result;
}
};
}//namespace detail
# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE
template<>
GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_lowp> outerProduct<4, 4, float, aligned_lowp>(vec<4, float, aligned_lowp> const& c, vec<4, float, aligned_lowp> const& r)
{
__m128 NativeResult[4];
glm_mat4_outerProduct(c.data, r.data, NativeResult);
mat<4, 4, float, aligned_lowp> Result;
std::memcpy(&Result[0], &NativeResult[0], sizeof(Result));
return Result;
}
template<>
GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_mediump> outerProduct<4, 4, float, aligned_mediump>(vec<4, float, aligned_mediump> const& c, vec<4, float, aligned_mediump> const& r)
{
__m128 NativeResult[4];
glm_mat4_outerProduct(c.data, r.data, NativeResult);
mat<4, 4, float, aligned_mediump> Result;
std::memcpy(&Result[0], &NativeResult[0], sizeof(Result));
return Result;
}
template<>
GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_highp> outerProduct<4, 4, float, aligned_highp>(vec<4, float, aligned_highp> const& c, vec<4, float, aligned_highp> const& r)
{
__m128 NativeResult[4];
glm_mat4_outerProduct(c.data, r.data, NativeResult);
mat<4, 4, float, aligned_highp> Result;
std::memcpy(&Result[0], &NativeResult[0], sizeof(Result));
return Result;
}
# endif
}//namespace glm
#elif GLM_ARCH & GLM_ARCH_NEON_BIT
namespace glm {
#if GLM_LANG & GLM_LANG_CXX11_FLAG
template <qualifier Q>
GLM_FUNC_QUALIFIER
typename std::enable_if<detail::is_aligned<Q>::value, mat<4, 4, float, Q>>::type
operator*(mat<4, 4, float, Q> const & m1, mat<4, 4, float, Q> const & m2)
{
auto MulRow = [&](int l) {
float32x4_t const SrcA = m2[l].data;
float32x4_t r = neon::mul_lane(m1[0].data, SrcA, 0);
r = neon::madd_lane(r, m1[1].data, SrcA, 1);
r = neon::madd_lane(r, m1[2].data, SrcA, 2);
r = neon::madd_lane(r, m1[3].data, SrcA, 3);
return r;
};
mat<4, 4, float, aligned_highp> Result;
Result[0].data = MulRow(0);
Result[1].data = MulRow(1);
Result[2].data = MulRow(2);
Result[3].data = MulRow(3);
return Result;
}
#endif // CXX11
template<qualifier Q>
struct detail::compute_inverse<4, 4, float, Q, true>
{
GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m)
{
float32x4_t const& m0 = m[0].data;
float32x4_t const& m1 = m[1].data;
float32x4_t const& m2 = m[2].data;
float32x4_t const& m3 = m[3].data;
// m[2][2] * m[3][3] - m[3][2] * m[2][3];
// m[2][2] * m[3][3] - m[3][2] * m[2][3];
// m[1][2] * m[3][3] - m[3][2] * m[1][3];
// m[1][2] * m[2][3] - m[2][2] * m[1][3];
float32x4_t Fac0;
{
float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2));
float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3);
float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2);
float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3));
Fac0 = w0 * w1 - w2 * w3;
}
// m[2][1] * m[3][3] - m[3][1] * m[2][3];
// m[2][1] * m[3][3] - m[3][1] * m[2][3];
// m[1][1] * m[3][3] - m[3][1] * m[1][3];
// m[1][1] * m[2][3] - m[2][1] * m[1][3];
float32x4_t Fac1;
{
float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1));
float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3);
float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1);
float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3));
Fac1 = w0 * w1 - w2 * w3;
}
// m[2][1] * m[3][2] - m[3][1] * m[2][2];
// m[2][1] * m[3][2] - m[3][1] * m[2][2];
// m[1][1] * m[3][2] - m[3][1] * m[1][2];
// m[1][1] * m[2][2] - m[2][1] * m[1][2];
float32x4_t Fac2;
{
float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1));
float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2);
float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1);
float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2));
Fac2 = w0 * w1 - w2 * w3;
}
// m[2][0] * m[3][3] - m[3][0] * m[2][3];
// m[2][0] * m[3][3] - m[3][0] * m[2][3];
// m[1][0] * m[3][3] - m[3][0] * m[1][3];
// m[1][0] * m[2][3] - m[2][0] * m[1][3];
float32x4_t Fac3;
{
float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0));
float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3);
float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0);
float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3));
Fac3 = w0 * w1 - w2 * w3;
}
// m[2][0] * m[3][2] - m[3][0] * m[2][2];
// m[2][0] * m[3][2] - m[3][0] * m[2][2];
// m[1][0] * m[3][2] - m[3][0] * m[1][2];
// m[1][0] * m[2][2] - m[2][0] * m[1][2];
float32x4_t Fac4;
{
float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0));
float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2);
float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0);
float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2));
Fac4 = w0 * w1 - w2 * w3;
}
// m[2][0] * m[3][1] - m[3][0] * m[2][1];
// m[2][0] * m[3][1] - m[3][0] * m[2][1];
// m[1][0] * m[3][1] - m[3][0] * m[1][1];
// m[1][0] * m[2][1] - m[2][0] * m[1][1];
float32x4_t Fac5;
{
float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0));
float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1);
float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0);
float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1));
Fac5 = w0 * w1 - w2 * w3;
}
float32x4_t Vec0 = neon::copy_lane(neon::dupq_lane(m0, 0), 0, m1, 0); // (m[1][0], m[0][0], m[0][0], m[0][0]);
float32x4_t Vec1 = neon::copy_lane(neon::dupq_lane(m0, 1), 0, m1, 1); // (m[1][1], m[0][1], m[0][1], m[0][1]);
float32x4_t Vec2 = neon::copy_lane(neon::dupq_lane(m0, 2), 0, m1, 2); // (m[1][2], m[0][2], m[0][2], m[0][2]);
float32x4_t Vec3 = neon::copy_lane(neon::dupq_lane(m0, 3), 0, m1, 3); // (m[1][3], m[0][3], m[0][3], m[0][3]);
float32x4_t Inv0 = Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2;
float32x4_t Inv1 = Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4;
float32x4_t Inv2 = Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5;
float32x4_t Inv3 = Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5;
float32x4_t r0 = float32x4_t{-1, +1, -1, +1} * Inv0;
float32x4_t r1 = float32x4_t{+1, -1, +1, -1} * Inv1;
float32x4_t r2 = float32x4_t{-1, +1, -1, +1} * Inv2;
float32x4_t r3 = float32x4_t{+1, -1, +1, -1} * Inv3;
float32x4_t det = neon::mul_lane(r0, m0, 0);
det = neon::madd_lane(det, r1, m0, 1);
det = neon::madd_lane(det, r2, m0, 2);
det = neon::madd_lane(det, r3, m0, 3);
float32x4_t rdet = vdupq_n_f32(1 / vgetq_lane_f32(det, 0));
mat<4, 4, float, Q> r;
r[0].data = vmulq_f32(r0, rdet);
r[1].data = vmulq_f32(r1, rdet);
r[2].data = vmulq_f32(r2, rdet);
r[3].data = vmulq_f32(r3, rdet);
return r;
}
};
}//namespace glm
#endif